Skip to main content
Mechanical Engineering

The Advantages of Finite Element Analysis in Mechanical Engineering

By May 13, 2019No Comments3 min read

From aerospace to healthcare, engineers in every industry are constantly thinking of how to make improvements. Designing new components, materials, and procedures is a process of constant innovation. Before these designs can be used, they must be rigorously tested under real-world conditions to ensure that they work safely and effectively. Instead of testing prototype after prototype, it can be more cost-effective to subject designs to finite element analysis performed by a mechanical engineering service.

What Is Finite Element Analysis?

Finite element analysis involves breaking down the complex geometry of a mechanical component or system into an assembly of smaller (finite) and simpler elements. Each of these elements is modeled in a computer and subjected to mathematical calculations that test everything from the effects of electromagnetism on the component to its response to prolonged heating, physical stress, etc. These calculations are described using partial differential equations that are systematically applied to each element to demonstrate how it would react to real world conditions.

The Three Stages of Finite Element Analysis

Mechanical engineers begin finite element analysis by developing an “element mesh,” a breakdown of the test subject into multiple discrete elements. Then, each element is systematically analyzed in a computer simulation, applying any condition the engineering team deems important and solving equations at numerous data points to create a matrix of information. That range of data is then compiled and analyzed to provide a comprehensive evaluation of the design.

The Benefits of Finite Element Analysis

Finite element analysis lets mechanical engineering firms test, re-test, and recalibrate designs for a new component, material, or process. Breaking down physical structures into groups of smaller elements allows engineers to subject them to a variety of simulated conditions without the need for multiple prototypes. Finite element analysis can be used to test components in situations that would be expensive or difficult to test in a controlled environment, such as a piston design’s response to extreme temperatures or the durability of components in an oil rig under fluid pressure.

Encorus Group offers nationwide finite element analysis as part of our broad range of mechanical engineering services. From municipal waterworks to nuclear power facilities, we can help you rigorously analyze, assess, and perfect your designs to ensure that they will perform as intended. We are proud to be a Service-Disabled Veteran-Owned Small Business (SDVOSB) with decades of experience in the field. For more information about finite element analysis or our other mechanical engineering solutions, call Dana Pezzimenti, P.E. at 716.592.3980, ext.128 or email him at